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QCD on Coarse Lattices∗
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We show that the perturbatively-improved gluon action for QCD, once it is tadpole-improved, gives
accurate results even with lattice spacings as large as 0.4 fm. No tuning of the couplings is required.
Using this action and lattice spacing, we obtain a static potential that is rotationally invariant to within
a few percent, the spin-averaged charmonium spectrum accurate to within 30–40 MeV, and scaling to
within 5–10%. We demonstrate that simulations on coarse lattices are several orders of magnitude less
costly than simulations using current methods.

∗ Talk presented by G.P. Lepage at Lattice ’94 (Bielefeld, Germany, September 1994)

Recent studies indicate that weak-coupling per-
turbation theory, when properly renormalized
and tadpole improved, gives an accurate account
of lattice-QCD dynamics even at distances as
large as 1/2 fm [1]. This suggests that accurate
simulations can be carried out on very coarse lat-
tices, perhaps with lattice spacing a ≈ 1/2 fm,
by using (asymptotically free) perturbation the-
ory to correct for dynamics at distance scales
smaller than a. In this paper we present new
evidence that this is indeed the case for gluon dy-
namics. We show accurate results obtained with
spacing a ≈ 0.4 fm. This is 4–8 times larger than
usual a’s, and leads to a spectacular reduction in
simulation costs, which typically vary as 1/a6.

The standard discretizations of the quark and
gluon actions are not sufficiently accurate for
simulations on such coarse lattices; the leading
finite-a errors must be removed. Such errors can
be systematically removed from on-shell quanti-
ties, like scattering amplitudes and masses, by
adding nonrenormalizable terms to the lattice ac-
tions [2]. Since these terms correct primarily the
short-distance behavior of the theory, their coef-
ficients can be computed using perturbation the-
ory once a is sufficiently small. Early tests of this
technique for lattice QCD showed little improve-
ment, but these used naive lattice perturbation

theory and so seriously underestimated the coeffi-
cients. The use of renormalized perturbation the-
ory and especially tadpole improvement results
in significantly larger coefficients and, as we will
show, greatly reduced finite-a errors. Note that,
unlike some improvement schemes, perturbative
improvement of this sort does not introduce new
parameters to be tuned numerically; here the ad-
ditional couplings in the action are computed, be-
fore the simulation, using tadpole-improved per-
turbation theory.

Perturbatively improved actions have already
proven very successful in simulations of heavy-
quark mesons like the Υ. In the nonrelativis-
tic NRQCD quark action, both relativistic effects
and finite-a corrections are introduced through
nonrenormalizable corrections to the basic action.
The detailed simulation results presented in [3]
agree well with experiment, and many depend
crucially on these corrections. Tadpole improve-
ment was essential to this success; test runs with-
out tadpole improvement underestimated rela-
tivistic effects by as much as a factor of two.

The standard Wilson action for gluons has
finite-a errors of O(a2), which are plainly visible
in the static-quark potential computed on a lat-
tice with a ≈ 0.4 fm (see Fig. 1a). To reduce these
errors we use a corrected action [4] that includes
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Figure 1. Static-quark potential computed on 64

lattices with a ≈ 0.4 fm using the β = 4.5 Wilson
action and the improved action with βpl = 6.8,
βrt = −0.562, and βpg = −0.0844.

two new terms in addition to the usual plaquette
term:

S[U ] = βpl

∑

pl

1
3

Re Tr(1 − Upl)

+ βrt

∑

rt

1
3

Re Tr(1 − Urt)

+ βpg

∑

pg

1
3

Re Tr(1 − Upg), (1)

Here Upl is the 1×1 plaquette operator, Urt is the
1 × 2 rectangle operator, and Upg is the six-link
parallelogram operator (path µ, ν, ρ,−µ,−ν,−ρ
where µ, ν, ρ are all different directions). In our
work, we take the plaquette coupling βpl as an
input and compute the other two using perturba-

tion theory. By tadpole improving the one-loop
results in [4] we obtain:

βrt = − βpl

20 u2
0

(1 + 0.4805αs) (2)

βpg = −βpl

u2
0

0.03325αs. (3)

As expected, tadpole improvement significantly
improves the convergence of the βrt expansion.
Following [1], we use the measured expectation
value of the plaquette to determine both the value
of the mean link u0 and the QCD coupling con-
stant αs used in these expressions:

u0 =
(

1
3

Re Tr〈Upl〉
)1/4

, (4)

αs =
1
3

Re Tr(1 − 〈Upl〉)
3.06839

. (5)

The couplings βrt and βpg are determined self-
consistently with u0 and αs for a given βpl. As
in NRQCD, there is no tuning here of the cou-
plings for the correction terms; tadpole-improved
perturbation theory determines them in terms of
the single bare coupling βpl.

1

The static-quark potential computed using the
improved gluon action is shown in Fig. 1b. As
in the Wilson case (Fig 1a), the lattice spacing
is about 0.4 fm. The dashed line in these plots
is the standard infrared parameterization for the
potential, V (r) = Kr − π/12r + c, adjusted to
fit the on-axis values of the potential. Off-axis
points deviate from the fit by as much as 35% for
the Wilson theory, indicating a significant fail-
ure of rotation invariance due to finite-a errors.
By contrast, the deviations are only 2–4% for the
improved theory— negligible for most low-energy
applications. Tuning the couplings away from
their one-loop perturbative values results in lit-
tle further improvement, suggesting that O(a4)
effects are as important at this a as the O(α2

s a
2)

errors that have not been included.
To further check on our improved theory, we ex-

amined the spin-averaged spectrum of the ψ fam-
ily of mesons using NRQCD for the c-quarks and
our improved action at βpl = 6.8 and 7.4. Because

1Using identies from [2] we find that our action is positive
semidefinite at least for βpl ≥ 6.8.
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βpl a (1P − 1S)/
√
σ

Wilson 4.5 .41 fm 1.46 (5)
5.7 .17 fm 0.92 (5)

Improved 6.8 .41 fm 0.99 (5)
7.4 .25 fm 0.93 (5)

Table 1
Ratio of the charmonium 1P −1S splitting to the
square root of the string tension.

we were examining only the spin-averaged spec-
trum, we omitted all relativistic corrections from
the NRQCD action, but kept the corrections for
O(a, a2) errors. The spectra, normalized to give
the correct 1P -1S splitting, are shown in Fig. 2
together with experimental results (dashed lines)
and simulation results obtained using the Wilson
action for the gluons at smaller a’s [3]. All agree
to within 30–40 MeV. Also the results scale well
with the string tension σ in the improved the-
ory, but very poorly in the Wilson theory (see
Table 1).

Since coarse lattices have far fewer sites and
much less critical-slowing-down, the cost to pro-
duce a statistically independent configuration
should be much less on a coarser lattice. To exam-
ine this issue, we compared our results with those
in [5] for the potential computed using the Wilson
action at β = 6 (324 lattice with a ≈ 0.1 fm). We
rescaled the coordinates and potential from this
other study to put them in the same units as our
βpl = 6.8 results, and examined the potentials at
comparable distances. The results from both sim-
ulations are listed in Table 2. In both cases the
potential is obtained from the time dependence
of loop-like correlation functions for times equal
to or larger than some Tmin. Our results required
1.3 × 107 site updates, while the analysis on the
fine lattice required 6.4× 109 site updates. Since
statistical errors (for Tmin = 0.4 fm) are about
20 times smaller for the coarse lattice, we estimate
that comparable errors with the fine lattice would
require 197,000 times more site updates than we
used on the coarse lattice.

Comparisons of the sort just discussed are nec-
essarily crude, but the implications are clear. The

c a ≈ 0.41 fm
s a ≈ 0.25 fm
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Figure 2. S, P , andD states of charmonium com-
puted on lattices with: a ≈ 0.41 fm (improved
action, βpl = 6.8); a ≈ 0.25 fm (improved ac-
tion, βpl = 7.4); and a ≈ 0.17 fm (Wilson action,
β = 5.7).

a = ac ≈ 0.41 a ≈ 0.10
r/ac Tmin = .4 Tmin = .8 Tmin = .3

1 0.871 ( 0) 0.887 ( 1)
0.962 0.839 (11)√

2 1.373 ( 1) 1.384 ( 2)
1.361 1.316 (25)√

3 1.718 ( 2) 1.742 (10)
1.667 1.581 (54)

2 1.897 ( 2) 1.941 (10)
1.924 1.842 (42)

Table 2
Comparison of the static-quark potential a V (r)
as computed on a coarse lattice (improved action,
βpl = 6.8, a ≈ 0.41 fm), and on a fine lattice
(Wilson action, β = 6, a ≈ 0.10 fm).
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shift to coarse lattices and perturbatively im-
proved actions, with tadpole-improved couplings,
makes possible the calculation of the QCD hadron
spectrum to, say, 1% accuracy with orders of
magnitude less computing power than is possible
with current methods.
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Cornell’s Center for Theory and Simulation for
help in using the IBM SP-2 supercomputer for
parts of this work. This work was supported by
the DOE and NSF.
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